Time-dependent density functional theory on a lattice

نویسندگان

  • M. Farzanehpour
  • I. V. Tokatly
چکیده

Time-dependent density functional theory (TDDFT) for quantummany-body systems on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is v representable if the initial many-body state and the density satisfy certain well-defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is locally in time v representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry, and/or spatial dimensionality. General statements of the existence theorem are illustrated on a pedagogical exactly solvable example, which displays all the details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for future research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorption of DCM Dye in Ethanol: Experimental and Time Dependent Density Functional Study

Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented ...

متن کامل

Theoretical Study on Structure and Electronic Properties of Aniline-5-Membered Heterocyclic Co-oligomers

With the aim of exploring the electronic and optical properties of some interesting conductive copolymers in view of potential applications, a regular oligomer systems made of aniline and three reference heterocyclic compounds (pyrrole, thiophene and furan) are studied using density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations at B3LYP/6-31+G(d,p) le...

متن کامل

Coordination and Siting of Cu+ Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study

Coordination of Cu+ ions adsorbed on plausible sites of a silicalite-2 lattice has been investigated computationally via hybrid density functional theory method at the B3LYP/6-311+G* and B3LYP/Def2-TZVP levels of theory using molecular models of the active site. The symmetrical coordination of Cu+ ions to almost five oxygen atoms of the all-silica framework in six-membered ring (6MR) sites of t...

متن کامل

Photosensitizing properties for porphyrazine and some derivatives

We have investigated photosensitizing properties for porphrazine and eleven of its related derivatives based on time-dependent density functional theory (TD-DFT) calculations. The modles have been divided into two categories based on the existence of CN functional group in one category but not in the other one. The other functional groups include H, CH3, F, CF3, C6H5, and C6F5 counterparts. The...

متن کامل

A Density Functional Approach toward Structural Features and Properties of C20 and its Complexes with C2X4, C2X2 (X = H, F, Cl, Br) for Synthesis Application

The complexes between C20 and C2 X4 , C2 X2 (X = H, F, Cl, Br) have been studied theoretically at the B3LYP/6-311G (d,p) level. The calculations include the optimized geometries, the interaction energies, aromaticity and thermodynamic. The interaction energies ranging from -60 to -101 kcal/mol and being ordered as: X = F> Cl > Br. Natural bond orbital (NBO) analysis has been performed on all ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012